
By Jon Bentley

programming
pearts

WRITING CORRECT PROGRAMS

In the late 1960s people were talking about the promise of
programs that verify the correctness of other programs. Unfor-
tunately, it is now the middle of the 1980s, and, with precious
few exceptions, there is still little more than talk about auto-
mated verification systems. Despite unrealized expectations,
however, the research on program verification has given us
something far more valuable than a black box that gobbles
programs and flashes "good" or "bad"--we now have a funda-
mental understanding of computer programming.

The purpose of this column is to show how that fundamen-
tal understanding can help programmers write correct pro-
grams. But before we get to the subject itself, we must keep it
in perspective. Coding skill is just one small part of writing
correct programs. The majority of the task is the subject of the
three previous columns: problem definition, algorithm design,
and data structure selection. If you perform those tasks well,
then writing correct code is usually easy.

The Challenge of Binary Search
Even with the best of designs, every now and then a program-
mer has to write subtle code. This column is about one prob-
lem that requires particularly careful code: binary search.
After defining the problem and sketching an algorithm to
solve it, we'll use principles of program verification in several
stages as we develop the program.

The problem is to determine whether the sorted array
X[1. . N] contains the element T. Precisely, we know that N
> 0 and that X[1] < X[2] < . . - < X[N]. The types of T and
the elements of X are the same; the pseudocode should work
equally well for integers, reals or strings. The answer is stored
in the integer P (for position); when P is zero T is not in
X[1 .. N], otherwise 1 < P _< N and T = X[P].

Binary search solves the problem by keeping track of a
range within the array in which T must be if it is anywhere
in the array. Initially, the range is the entire array. The range
is diminished by comparing its middle element to T and
discarding half the range. This process continues until T is
discovered in the array or until the range in which it must lie
is known to be empty. The process makes roughly logs N
comparisons.

Most programmers think that with the above description in
hand, writing the code is easy; they're wrong. The only way
you'll believe this is by putting down this column right now,
and writing the code yourself. Try it.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1983 ACM 0001-0782/83/1200-1040 75¢

I've given this problem as an in-class assignment in courses
at Bell Labs and IBM. The professional programmers had one
hour (sometimes more) to convert the above description into a
program in the language of their choice; a high-level pseudo-
code was fine. At the end of the specified time, almost all the
programmers reported that they had correct code for the task.
We would then take 30 minutes to examine their code,
which the programmers did with test cases. In many different
classes and with over a hundred programmers, the results
varied little: 90 percent of the programmers found bugs in
their code (and I wasn't always convinced of the correctness
of the code in which no bugs were found).

I found this amazing: only about 10 percent of professional
programmers were able to get this small program right. But
they aren't the only ones to find this task difficult. In the
history in Section 6.2.1 of his Sorting and Searching, Knuth
points out that while the first binary search was published in
1946, the first published binary search without bugs did not
appear until 1962.

Writing The Program
The key idea of binary search is that we always know that if
T is anywhere in X[1. . N], then it must be in a certain range
of X. We'll use the shorthand MustBe(range) to mean that if T
is anywhere in the array, then it must be in range. With this
notation, it's easy to convert the above description of binary
search into a program sketch.

initialize range to designate X[I..N]
loop

{ invariant: MustBe(range) 1
if range is empty,

return that T is nowhere in the
array

compute M, the middle of the range
use M as a probe to shrink the range

if T is found during the
shrinking process, return its
position

endloop

The crucial part of this program is the loop invariant, which
is enclosed in {}'s. This is an assertion about the program state
that is invariantly true at the beginning and end of each
iteration of the loop (hence its name); it formalizes the intui-
tive notion we had above.

We'll now refine the program, making sure that all our
actions respect the invariant. The first issue we must face is
the representation of range: we'll use two indices L and U (for
"lower" and "upper") to represent the range L . . U. (There are
other possible representations for a range, such as its begin-

1040 Communications of the ACM December 1983 Volume 26 Number 12

PROGRAMMING PEARLS

ning position and its length.) The next step is the initializa-
tion; what values should L and U have so that MustBe(L, U) is
true? The obvious choice is I and N: MustBe(1, N) says that if
T is anywhere in X, then it is in X[1. . N], which is precisely
what we know at the beginning of the program. Thus initiali-
zation consists of the assignments T. : = 1 and u : = N.

The next tasks are to check for an empty range and to
compute the new midpoint, M. The range L . . U is empty if
L > U, in which case we store the special value 0 in P and
terminate the loop, which gives

if L>U then
P:=0, break

The break statement terminates the loop denoted by the loop-
endloop delimeters. This statement computes M, the midpoint
of the range:

M := (L + U) div 2

The div operator implements integer division, so 6 div 2 is 3,
as is 7 div 2. The program is now

L:=I , U:=N
loop

{ invariant: MustBe(L,U) }
i f L>U then

P:=0; break
M := (L+U) div 2
use M as a probe to shrink the range

L..U. If T is found during the
shrinking process, note its
position and break

endloop

Refining the last three lines in the loop body will involve
comparing T and X[M] and taking appropriate action to main-
tain the invariant. Thus the code will have the form

c a s e

X[M] < T: Action a

X[S] = T: Action b

X[M] > T: Action c

Action b is easy: we know that T is in position M, so we set P
to M and break the loop. Because the other two cases are
symmetric, we'll focus on the first and trust that the last will
follow by symmetry (this is part of the reason we'll verify the
code precisely in the next section).

If X[M] < T, then we know that X[1] _< X[2] <_ . . . _< X[M]
< T, so T can't be anywhere in X[1. . M]. Combining this
with the knowledge that T must be in X[L.. U], we know
that if it is anywhere, then it must be in X[M + 1 . . U], which
we write as MustBe(M + 1, U). Given this, how can we
reestablish the invariant MustBe(L, U)? The answer is obvious:
set L to M + 1. Putting these cases together with the previous
pseudocode gives

L:=I ; U:=N
loop

I MustBe(L,U) }
i f L>U then

P:=0; break
M := (L+U) div 2
case

X[M] < T: L:=M+I
X[M] = T: P:=M; break
X[S] > T: U:=M-1

endloop

It's a short program: ten lines of code and one invariant

assertion. The basic techniques of program verification--stat-
ing the invariant precisely and keeping eye towards maintain-
ing the invariant as we wrote each line of code--helped us
greatly as we converted the algorithm sketch into pseudocode.
This development gives us some confidence that the program
is correct, but we are by no means certain of its correctness.
Spend a few minutes convincing yourself that the code is
correct before reading on.

Understanding the Program
When I face a subtle problem, I try to derive a program at
about the level of detail we just saw. I then use verification
methods to increase my confidence that it is correct. In this
section we'll study such an argument for the above binary
search at a picky level of detai l - - in practice I'd go through a
much less formal analysis. The program in Figure I is (too)
heavily annotated with assertions that formalize the intuitive
notions we used as we developed the code.

While the development of the code was top-down (starting
with the general idea and refining it to individual lines of
code), this analysis of correctness will be bottom-up: we'll
start with the individual lines of code, and show how they
work together to solve the problem.

Waming--Boring Material Ahead
Skip to Next Section When Drowsiness Strikes

It's easy to verify lines 1 through 3. The assertion in line 1
is true by the definition of MustBe (if T is anywhere in the
array, then it must be in X[1. . N]). The assignment in line 2
therefore gives the assertion in line 3.

We come now to the heart of the program: the loop in lines
4 through 28. There will be three parts to our argument for its
correctness, each of which is closely related to the loop invar-
iant:

Initialization. The loop invariant is true when execution of
the loop begins.
Preservation. If the invariant holds at the beginning of an
iteration and the loop body is executed again, then the
invariant will still be true.
Termination. Upon termination of the loop, the desired re-
sult will hold (in this case, the desired result is that P has
the correct value). Showing this will use the facts estab-
lished by the invariant.

Initialization is easy: the assertion in line 3 is the same as that
in line 5. To establish the other two properties, we will reason
from line 5 through to line 27. When we discuss lines 9 and
21 (the break statements) we will establish termination prop-
erties, and if we make it all the way to line 27, we will have
established preservation, because line 27 is the same as line 5.

If the test in line 6 is successful, we know the assertion of
line 7: if T is anywhere in the array then it must be between
L and U, and the success of the test means that L > U.
Reasoning from that gives the assertion in line 8: T is no-
where in the array. Thus we correctly terminate the loop in
line 9 after setting P to zero.

On the other hand, if the test in line 6 is unsuccessful, we
come to line 10. The invariant still holds (we've done nothing
to change it), and because the test failed we also know that
L _< U. Line 11 sets M to the average of L and U, truncated
down to the nearest integer. Because the average is always
between the two values, we have the assertion of line 12.

This brings us to the case statement in lines 12 through 27;
the analysis of the statement will involve considering each of

December 1983 Volume 26 Number 12 Communications of the ACM 1041

PROGRAMMING PEARLS

6
7
8
9

10
11
12
13
lq
15
16
17
18
19
20
21
22
23
2q
25
26
27
28

{ MustBe(1,N) }
L:=I;U:=N
{ H.stSe(L,U) }
loop

{ MustBe(L,U) }
if L>U then

{ L>U and MustBe(L,U) }
{ T is nowhere in the array }
P := 0; break

{ MustBe(L,U) and L<=U }
M := (L+U) div 2
{ MustBe(L,U) and L<=M<=U 1
case

X[H] < T:
{ MustBe(L,U) and CantBe(1,M)
{ MustBe(M+1,U) }
L := M+I
{ MustBe(L,U) }

X[M] = T:
{ X[M] = T }
P := M; break

X[H] > T:
{ MustBe(L,U) and CantBe(M,N)
{ MustBe(L,M-1) }
U:=M-I
{ MustBe(L, U)}

{ MustBe(L,U) }
endloop

FIGURE1. A~archprogmmanno~tedwithasser l i~s .

its three possible choices. The easiest choice to analyze is the
second alternative, in line 19. In that case we know the
assertion in line 20, so we are correct in setting P to M and
terminating the loop. This is the second of two places where
the loop is terminated, and both end it correctly, so we have
established the termination correctness of the loop.

We come now to the two symmetric branches of the case
statement; because we concentrated on the first branch as we
developed the code, we'll turn our attention now to lines 22
through 26. Consider the assertion in line 23; the first clause
is the invariant, which the program has not altered. The
second clause is true because T < X[M] _< X[M + 1] < . . . _<
X[N], so we know that T can't be anywhere in the array
above position M - 1; this is expressed in the assertion with
the shorthand CantBe(M, N). But logic tells us that if T must

be between L and U and can't be at or above M, then it must
be between L and M - 1 (if it is anywhere in X); hence line
24. Execution of line 25 with line 24 true leaves line 26
t rue-- that is the definition of assignment. Thus this choice of
the case statement re-establishes the invariant in line 27.

The argument for lines 14 through 18 has exactly the same
form. Line 15 follows from line 14 and the sortedness of the
array; it in turn implies line 16. The assignment in line 17 re-
establishes the invariant in line 18. We've thus analyzed all
three choices of the case statement. One correctly terminates
the loop, and the other two maintain the invariant.

This completes one part of the analysis of the code: we've
shown that if the loop terminates, then it does so with the
correct value in P. It may still, however, have a bug: it might
never halt. Indeed, this was the most common error in the
programs written by the professional programmers.

Our halting proof will use a different aspect of the range
L . . U. That range is initially a certain finite size (N), and lines
6 through 9 ensure that the loop terminates when the range
contains less than one element. Thus to prove termination we
show that the range shrinks during each iteration of the loop.
But that is easy by combining lines 12, 17 and 25. Line 12 tells
us that M is indeed within the current range. If lines 14
through 18 are executed, then line 17 ensures that the bottom
of the range will be increased by at least one. Likewise, if
lines 22 through 26 are executed, then line 25 will decrease
the top of the range by at least one. In both cases in which
the loop continues, the range is decreased by at least one; the
program must therefore halt.

Implementing the Program
So far we've worked with the program in a high-level pseudo-
language; our willingness to invent a new control structure
allowed us to ignore the details of any particular implementa-
tion language and to focus on the heart of the problem. Even-
tually, however, we have to write the program in a real
language. Just so you don't think that I chose the language to
make the task easy, I implemented binary search in BASIC.
Although that language is fine for some tasks, its paucity of
control structures and its global (and typically short) variable
names are substantial barriers to building real programs.

Even with theseproblems, it was easy to translate the
above pseudocode into the subroutine in a BASIC dialect
shown in Figure 2. Because I translated this program from the
carefully verified pseudocode, I had good reason to believe
that it is correct. Before I would use it in an application,

1000
1010
lO20
1030
lOqO
10q5
1050
1060
1070
1080
1090
1100
1110
1120
1130
11q0
1150

BINARY SEARCH FOR T IN X(I..N)
PRE: X(I..N) IS SORTED IN NONDECREASING ORDER

POST: P=0 => T IS NOT IN X(1..N)

P>0 => P<N+I AND X(P)=T

SIDE EFFECTS: L, U AND M ARE ALTERED

L=I: U=N

' MAIN LOOP
' INVARIANT: IF T IS ANYWHERE IN THE ARRAY,

' THEN IT MUST BE BETWEEN L AND U

IF L>U THEN P=0: RETURN
M=CINT((L+U)/2)
IF X(M)<T THEN L=M+I: GOTO 1070
IF X(M)>T THEN U=M-I: GOTO 1070

' X(M)=T

P=M: RETURN

FIGURE 2. Bina~ ~amh in a BASIC dialect.

1042 Communications of the ACM December 1983 Volume 26 Number 12

i~ROGRAMMI~

however, I would test it on sample data. I therefore wrote a
test program in about 25 lines of BASIC. After declaring
an (N + 2)-element array (indexed from 0 to N + 1), the
program initialized X[/] to I. It then performed N searches for
the elements I through N and checked that each returned
P = I. After that, it performed N + 1 unsuccessful searches
for 0.5, 1.5 N + 0.5 and checked that each returned
P = 0. Finally, it searched for 0 and N + 1 and checked that
they returned P -- 0. When I ran these tests for values of
N from 0 to 10 (inclusive), the first version of the program
passed them all.

These tests poke around most of the program. They test
every possible position for successful and unsuccessful
searches, and the case that an element is in the array but
outside the search bounds. Testing N from 0 to 10 covers the
empty array, common sizes for bugs (one, two and three),
several powers of two, and many numbers one away from a
power of two. That testing would have been dreadfully boring
(and therefore probably erroneous) by hand, but it used an
insignificant amount of computer time.

Many factors contribute to my opinion that the BASIC pro-
gram is correct: I used sound principles to derive the pseudo-
code; I used analytic techniques to "verify" its correctness;
and then I let a computer do what it's good at and bombard
the program with test cases.

Principles of Program Verification
This exercise displays many strengths of program verification:
the problem is important and requires careful code, the devel-
opment of the program is guided by verification ideas, and the
analysis of correctness employs general tools. The primary
weakness of this exercise is its level of detail; in practice we
could argue at a more informal level. Fortunately, the details
illustrate a number of general principles, including the follow-
ing

Assertions. The relations among input, program variables,
and output describe the "size" of a program; assertions allow a
programmer to enunciate those relations precisely. Their inte-
gral role throughout a program's life is discussed in the next
section.

Sequential Control Structures. The simplest structure to
control a program is of the form "do this statement then that
statement." We understand such structures by placing asser-
tions between them and analyzing each step of the program's
progress individually.

Selection Control Structures. These structures include i f
and c a s e statements of various forms; during execution, one
of many choices is selected. We show the correctness of such
a structure by considering each of the several choices individ-
ually. The fact that a certain choice is selected allows us to
make an assertion in the proof; if we execute the statement
following i f z > J, for instance, then we can use the fact that
I > J to derive the next relevant assertion.

Iteration Control Structures. Arguing the correctness of
loops has three phases: initialization, preservation, and termi-
nation. We first argue that the loop invariant is established by
initialization, and then show that each iteration maintains its
truth. These two steps show by mathematical induction that
the invariant is true before and after each iteration of the
loop. The third step is to argue that whenever execution of
the loop terminates, the desired result is true. These together
establish that if the loop ever halts, then it does so correctly;
we must prove termination by other means (the halting proof
of binary search used a typical argument).

Subroutines. To verify a subroutine, we first state its pur-
pose by two assertions. Its precondition is the state that must
be true before it is called, and its postcondition is what the
routine will guarantee on termination (see the BASIC binary
search for examples). These conditions are more a contract
than a statement of fact: they say that if the routine is called
with the preconditions satisfied, then the routine will assume
the burden of establishing the postcondition. After I prove
once that the body of the routine satisfies the conditions, I can
use the stated relations between the pre- and post-conditions
without ever again considering its implementation.

The Role of Program Verification
In teaching verification techniques to professionals, I've ob-
served that when one programmer tries to convince another
that a piece of code is correct, the primary tool is the test case:
execute the program by hand on a certain input. That's a
powerful tool: it's good for detecting bugs, easy to use, and
well understood. It is clear, however, that programmers have
a deeper understanding of programs--if they didn't, they
could never write them in the first place. One of the major
benefits of program verification is that it gives programmers a
language in which they can express that understanding

The language is first used as code is developed. The pro-
grammer should be able to explain every line of code as it is
written. The important explanations end up in the program
text as assertions; deciding which assertions to include is an
art that comes only with practice. Some languages provide an
a s s e r t statement that allows the programmer tO write the
assertions as logical expressions that are tested at run time; if
a false assertion is encountered, then it is reported and the
run is terminated (most systems allow assertion checking to
be turned off if it is too costly in run time).

The language of verification is also used often after the code
has been written. During debugging, violations of the a s s e r 1:
statements lead us to bugs, and examining the form of a
violation shows us how to remove the bug without introduc-
ing another. The verification techniques formalize code walk-
through procedures. Assertions are crucial during mainte-
nance of a program; when you pick up code that you've
never seen before, and no one else has looked at for years,
assertions about the program state can give invaluable insight.

I mentioned before that these techniques are only a small
part of writing correct programs; keeping the code simple is
usually the key to correctness. On the other hand, several
professional programmers familiar with these techniques have
related to me an experience that is too common in my own
programming: when they construct a program, the "hard"
parts work the first time, while the bugs are in the "easy"
parts. When they came to a hard part, they hunkered down
and successfully used powerful formal techniques. In the easy
parts, though, they returned to their old ways of program-
ming, with the old results. I wouldn't have believed this phe-
nomenon until it happened to me; it's good motivation to use
the techniques frequently.

Problems
1. As laborious as our proof of binary search was, it is still

unfinished by some standards. How would you prove that
the program is free of runtime errors (such as division by
zero, word overflow, or array indices out of bounds)? If you
have a background in discrete mathematics, can you for-
malize the proof in a logical system?

2. If the original binary search was too easy for you, try the
variant that returns in P the first occurrence of T in the

December 1983 Volume 26 Number 12 Communications of the ACM 1043

PROGRAMMING PEARLS

array X (if there are multiple occurrences of T, our original
algorithm returns an arbitrary one). Your code should
make a logarithmic number of comparisons of array ele-
ments; it is possible to do the job in log2 N such compari-
sons. [Hint: work from a precise invariant.]

3. Try the verification techniques on programs of your own
(try the most subtle code you've written recently). Specify
the assertions precisely, and then argue the transitions
from assertion to assertion with a colleague.

4. David Gries calls this the "Coffee Can Problem" in his
Science of Programming. You are initially given a large pile
of "extra" black beans and a coffee can that contains some
black beans and some white beans. You then repeat the
following process until there is a single bean left in the can.

Randomly select two beans. If they are the same color,
throw them both out and insert an extra black bean. If
they are different colors, return the white bean to the
can and throw out the black.

What can you say about the color of the final remaining
bean as a function of the numbers of black and white
beans originally in the can? [Hint: look for an invariant
preserved by the process, and then relate the initial condi-
tion of the can to its terminal condition.]

5. A colleague faced the following problem in a program to
draw lines on a bitmapped display. An array of N pairs of
reals (a~, bi) defined the N lines yj = aix + bi. He knew that
the lines were ordered in the x-range [0, 1] in the sense
that y~ < y~÷l for all values of i between I and N - 1 and
all values of x in [0, 1] (thus the lines could be viewed as
crooked rungs on a ladder). Given a point (x, y), where
0 ~ x ~ 1, he wanted to determine the two lines that
bracket the point. How could he solve the problem
quickly?

6. [Practice for the next column]. We saw in September 1983
that binary search is fundamentally faster than sequential
search: to search an N-element table, it makes roughly
log2 N comparisons while sequential search makes roughly
N/2. While that difference is often enough for a particular
program, in a few cases binary search must be made faster
yet. Although you can't reduce the logarithmic number of
comparisons made by the algorithm, can you rewrite bi-
nary search to lead to faster code? For definiteness, assume
that you want to search a sorted table of N = 1000 integers.

Solutions to Old Problems
1. Each entry in a tax table contains three values: the lower

bound for this bracket, the base tax, and the rate at which
income over the lower bound is taxed. Including a final
"sentinel" entry in the table with an "infinite" lower bound
will make the program easier to write.

2. Use two arrays to represent the coefficients of the recur-
rence and the k previous values; the program consists of a
loop within a loop.

3. Each line of a block letter can be represented by a se-
quence of integers telling the number of "black" spaces and
then the number of "white" spaces; many lines will have
the form white-black-white, though some letters will have
more alterations (consider "W"). It might be profitable to
encode also the number of times a particular line is to be
repeated.

Only one routine need be written from scratch; the other
two can use that as a subroutine. The routine for comput-
ing the number of days between two pairs of dates com-

4.

putes the number of each day in its respective year, sub-
tracts the earlier from the later (perhaps borrowing from
the year), and then adds 365 times the difference in years
plus one for each leap year. The routine to compute the
day of the week for a given day computes the number of
days between the given day and a known Sunday, and
then uses modular arithmetic to convert that to a day of
the week. To prepare a calendar for a month in a given
year we need to know how many days there are in the
month and the day of the week on which the 1 ~ falls.

5. Because the comparisons take place from the right to the
left of the word, it will probably pay to store the words in
reverse (right-to-left) order. Possible representations of a
sequence of suffixes include a two-dimensional array of
characters (which is usually wasteful), a single array of
characters with the suffixes separated by a break charac-
ter, and such a character array augmented with an array of
pointers, one to each word.

Industrial-Strength Program Verification
The verification techniques in this column can have an im-
mediate impact on any programmer: carefully specify the in-
put and output conditions of every module you write, and
then use the informal tools to develop the code and "verify"
its correctness. Remember that verification is only one of
many activities to ensure that you deliver correct, robust
code. If you read a book like the one described in the section
on further reading, it's bound to increase the quality of the
code you write.

Harlan Mills describes the impact that verification method-
ologies have had on the Federal Systems Division of IBM in a
special issue of the IBM Systems Journa/devoted to software
development (Volume 19, Number 4, 1980). Verification is a
substantial part of a course required of all programmers in the
division; the course is based on the book Structured Program-
ming by Linger, Mills and Witt (published in 1979 by Addi-
son-Wesley). In his article, Mills describes how methodologies
based on verification have played an important role in the
division's timely delivery of quality software. The projects are
substantial: one project he describes delivered three million
words of code and data (developed with 200 staff-years) on
time and under budget. For more details on this effort and
others within IBM, see that issue of the Systems Journa/.

Although they are not yet ready to be used in a production
environment, I believe that program verification systems may
soon assist the development of certain kinds of software. Ex-
cellent research in this area is under way at a number of
research centers, including Cornell University, the University
of Southern California's Information Sciences Institute, Stan-
ford University, and the University of Texas at Austin. The
Gypsy system developed at Austin by a team led by Don
Good is typical of this research.

Gypsy is a methodology for specifying, implementing, and
proving the correctness of programs. At its heart is the Gypsy
Verification Environment, which provides a set of tools for
applying the methodology to the construction of programs.
The programmer writes the specifications and the code itself;
the system keeps track of the various aspects of the software
(specifications, code and proof) and helps out in proving most
theorems. Gypsy has been used to develop two substantial
programs: a "message flow modulator" that filters out illegal
messages in the flow from one machine to another (556 exe-
cutable lines of code) and an interface to a computer network
(4211 lines of code that are executed in parallel on two com-
puters). Both programs have been extensively tested, and the
process found no bugs.

1044 Communications of the ACM December 1983 Volume 26 Number 12

PROGRAMMING PEARLS

Those facts must be understood in context. First, only the
smaller program was proved "totally correct"; the verification
of the larger showed only that it had certain properties (such
as never passing along an inappropriate message). That pro-
gram might still fail in some other way, but the proof shows
that certain mistakes won't be made. The second piece of bad
news is the cost: the productivity was only a few lines of code
per programmer per day (two on the small program, four on
the large program). Further research should increase the pro-
ductivity, but even this high a cost may be acceptable in
high-security and life-critical applications. I'm optimistic about
the promise of program verification for such applications; to
decide for yourself, try the paper "The Proof of a Distributed
System in Gypsy" by Don Good (Institute for Computer Sci-
ence Technical Report 30, University of Texas at Austin, Sep-

tember 1982). It is among the best that verification currently
has to offer, and it's an excellent piece of engineering.

Further Reading
The notion of developing a program hand-in-hand with its
proof of correctness was championed by E. W. Dijkstra in
the early 1970s, David Gries's Science of Programming
(Springer-Verlag, 1981) is an excellent introduction to the
field. It starts with a tutorial on logic, goes on to a formal
view of program verification and development, and finally
discusses programming in common languages. In this col-
umn I've tried to sketch the potential benefits of verifica-
tion; the only way that most programmers will be able to
use verification effectively is to study a book like this.

Which Typewriter Do You Choose?

(The following essay is reprinted from pp. 170-171 of Gries's Science of Programming
with the kind permission of Springer-Verlag~)

Back in 1867, the typewriter was introduced into the United
States. By 1873, the current arrangement of the keys on the
typewriter, called the QWERTY keyboard (after the first six
letters of the upper key row), was implemented, never to be
changed again. At that time typing speed was not important--
most people used two fingers anyway, Moreover, the typewrit-
ers often jammed, and the most-used letters were arbitrarily
distributed in order to reduce speed so jamming wouldn't oc-
cur so easily.

Today, millions of excellent, speedy touch-typists use the
inefficient QWERTY keyboard, because that is the only one
made. Every so often, a new arrangement is designed and
tested. The tests show that a good typist can learn the new
arrangement in a month or so, and thereafter will type much
faster with much less energy and strain. Yet the new keyboard
never catches on. Why? Too much is invested in hardware and
training. Because of the high cost of changeover, because of
inertia, QWERTY remains supreme.

Let's face it: the average programmer is a QWERTY pro-
grammer. He is stuck with old notations, like FORTRAN and
COBOL. More importantly he has been thinking with two fin-

gers, using the same mental tools that were used at the begin-
nings of computer science, in the 1940s and 1950s. True,
"structured programming" has helped, but even that, by itself,
is not enough. To put it simply, the mental tools available to
programmers have been inadequate.

The work on developing proof and program hand-in-hand is
beginning to show fruit, and it may lead to a more efficient
arrangement of the programmer's keyboard. Luckily, the hard-
ware need not change. Mental tools and attitudes are far more
important in programming than the notation in which the final
program is expressed. For example, one can use the principles
and strategies espoused in this book even if the final program
has to be in FORTRAN: one programs into a language, not in
it. To be sure, considerably more than one month of education
and training will be necessary to wean yourself away from
QWERTY programming, for old habits are changed very
slowly. Nevertheless, I think it is worthwhile.

Let us now turn to the elucidation of principles and strate-
gies that may help give the QWERTY programmer a new
keyboard.

December 1983 Volume 26 Number 12 Communications of the ACM 1045

