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WRITING CORRECT PROGRAMS 

In the late 1960s people were talking about the promise of 
programs that verify the correctness of other programs. Unfor- 
tunately, it is now the middle of the 1980s, and, with precious 
few exceptions, there is still little more than talk about auto- 
mated verification systems. Despite unrealized expectations, 
however, the research on program verification has given us 
something far more valuable than a black box that gobbles 
programs and flashes "good" or "bad"--we now have a funda- 
mental understanding of computer programming. 

The purpose of this column is to show how that fundamen- 
tal understanding can help programmers write correct pro- 
grams. But before we get to the subject itself, we must keep it 
in perspective. Coding skill is just one small part of writing 
correct programs. The majority of the task is the subject of the 
three previous columns: problem definition, algorithm design, 
and data structure selection. If you perform those tasks well, 
then writing correct code is usually easy. 

The Challenge of Binary Search 
Even with the best of designs, every now and then a program- 
mer has to write subtle code. This column is about one prob- 
lem that requires particularly careful code: binary search. 
After defining the problem and sketching an algorithm to 
solve it, we'll use principles of program verification in several 
stages as we develop the program. 

The problem is to determine whether the sorted array 
X[1. .  N] contains the element T. Precisely, we know that N 
> 0 and that X[1] < X[2] < . . -  < X[N]. The types of T and 
the elements of X are the same; the pseudocode should work 
equally well for integers, reals or strings. The answer is stored 
in the integer P (for position); when P is zero T is not in 
X[1 ..  N], otherwise 1 < P _< N and T = X[P]. 

Binary search solves the problem by keeping track of a 
range within the array in which T must be if it is anywhere 
in the array. Initially, the range is the entire array. The range 
is diminished by comparing its middle element to T and 
discarding half the range. This process continues until T is 
discovered in the array or until the range in which it must lie 
is known to be empty. The process makes roughly logs N 
comparisons. 

Most programmers think that with the above description in 
hand, writing the code is easy; they're wrong. The only way 
you'll believe this is by putting down this column right now, 
and writing the code yourself. Try it. 
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I've given this problem as an in-class assignment in courses 
at Bell Labs and IBM. The professional programmers had one 
hour (sometimes more) to convert the above description into a 
program in the language of their choice; a high-level pseudo- 
code was fine. At the end of the specified time, almost all the 
programmers reported that they had correct code for the task. 
We would then take 30 minutes to examine their code, 
which the programmers did with test cases. In many different 
classes and with over a hundred programmers, the results 
varied little: 90 percent of the programmers found bugs in 
their code (and I wasn't always convinced of the correctness 
of the code in which no bugs were found). 

I found this amazing: only about 10 percent of professional 
programmers were able to get this small program right. But 
they aren't the only ones to find this task difficult. In the 
history in Section 6.2.1 of his Sorting and Searching, Knuth 
points out that while the first binary search was published in 
1946, the first published binary search without bugs did not 
appear until 1962. 

Writing The Program 
The key idea of binary search is that we always know that if 
T is anywhere in X[1. .  N], then it must be in a certain range 
of X. We'll use the shorthand MustBe(range) to mean that if T 
is anywhere in the array, then it must be in range. With this 
notation, it's easy to convert the above description of binary 
search into a program sketch. 

initialize range to designate X[ I..N] 
loop 

{ invariant: MustBe(range) 1 
if range is empty, 

return that T is nowhere in the 
array 

compute M, the middle of the range 
use M as a probe to shrink the range 

if T is found during the 
shrinking process, return its 
position 

endloop 

The crucial part of this program is the loop invariant, which 
is enclosed in {}'s. This is an assertion about the program state 
that is invariantly true at the beginning and end of each 
iteration of the loop (hence its name); it formalizes the intui- 
tive notion we had above. 

We'll now refine the program, making sure that all our 
actions respect the invariant. The first issue we must face is 
the representation of range: we'll use two indices L and U (for 
"lower" and "upper") to represent the range L . .  U. (There are 
other possible representations for a range, such as its begin- 

1040 Communications of the ACM December 1983 Volume 26 Number 12 



PROGRAMMING PEARLS 

ning position and its length.) The next step is the initializa- 
tion; what values should L and U have so that MustBe(L, U) is 
true? The obvious choice is I and N: MustBe(1, N) says that if 
T is anywhere in X, then it is in X[1. .  N], which is precisely 
what we know at the beginning of the program. Thus initiali- 
zation consists of the assignments T. : = 1 and u :  = N. 

The next tasks are to check for an empty range and to 
compute the new midpoint, M. The range L . .  U is empty if 
L > U, in which case we store the special value 0 in P and 
terminate the loop, which gives 

if L>U then 
P:=0, break 

The break statement terminates the loop denoted by the loop- 
endloop delimeters. This statement computes M, the midpoint 
of the range: 

M := (L + U) div 2 

The div operator implements integer division, so 6 div 2 is 3, 
as is 7 div 2. The program is now 

L:=I , U:=N 
loop 

{ invariant: MustBe(L,U) } 
i f L>U then 

P:=0; break 
M := (L+U) div 2 
use M as a probe to shrink the range 

L..U. If T is found during the 
shrinking process, note its 
position and break 

endloop 

Refining the last three lines in the loop body will involve 
comparing T and X[M] and taking appropriate action to main- 
tain the invariant. Thus the code will have the form 

c a s e  

X[M] < T: Action a 

X[S] = T: Action b 

X[M] > T: Action c 

Action b is easy: we know that T is in position M, so we set P 
to M and break the loop. Because the other two cases are 
symmetric, we'll focus on the first and trust that the last will 
follow by symmetry (this is part of the reason we'll verify the 
code precisely in the next section). 

If X[M] < T, then we know that X[1] _< X[2] <_ . . .  _< X[M] 
< T, so T can't be anywhere in X[1. .  M]. Combining this 
with the knowledge that T must be in X[L..  U], we know 
that if it is anywhere, then it must be in X[M + 1 . .  U], which 
we write as MustBe(M + 1, U). Given this, how can we 
reestablish the invariant MustBe(L, U)? The answer is obvious: 
set L to M + 1. Putting these cases together with the previous 
pseudocode gives 

L:=I ; U:=N 
loop 

I MustBe(L,U) } 
i f L>U then 

P:=0; break 
M := (L+U) div 2 
case 

X[M] < T: L:=M+I 
X[M] = T: P:=M; break 
X[S] > T: U:=M-1 

endloop 

It's a short program: ten lines of code and one invariant 

assertion. The basic techniques of program verification--stat- 
ing the invariant precisely and keeping eye towards maintain- 
ing the invariant as we wrote each line of code--helped us 
greatly as we converted the algorithm sketch into pseudocode. 
This development gives us some confidence that the program 
is correct, but we are by no means certain of its correctness. 
Spend a few minutes convincing yourself that the code is 
correct before reading on. 

Understanding the Program 
When I face a subtle problem, I try to derive a program at 
about the level of detail we just saw. I then use verification 
methods to increase my confidence that it is correct. In this 
section we'll study such an argument for the above binary 
search at a picky level of detai l - - in  practice I'd go through a 
much less formal analysis. The program in Figure I is (too) 
heavily annotated with assertions that formalize the intuitive 
notions we used as we developed the code. 

While the development of the code was top-down (starting 
with the general idea and refining it to individual lines of 
code), this analysis of correctness will be bottom-up: we'll 
start with the individual lines of code, and show how they 
work together to solve the problem. 

Waming--Boring Material Ahead 
Skip to Next Section When Drowsiness Strikes 

It's easy to verify lines 1 through 3. The assertion in line 1 
is true by the definition of MustBe (if T is anywhere in the 
array, then it must be in X[1. .  N]). The assignment in line 2 
therefore gives the assertion in line 3. 

We come now to the heart of the program: the loop in lines 
4 through 28. There will be three parts to our argument for its 
correctness, each of which is closely related to the loop invar- 
iant: 

Initialization. The loop invariant is true when execution of 
the loop begins. 
Preservation. If the invariant holds at the beginning of an 
iteration and the loop body is executed again, then the 
invariant will still be true. 
Termination. Upon termination of the loop, the desired re- 
sult will hold (in this case, the desired result is that P has 
the correct value). Showing this will use the facts estab- 
lished by the invariant. 

Initialization is easy: the assertion in line 3 is the same as that 
in line 5. To establish the other two properties, we will reason 
from line 5 through to line 27. When we discuss lines 9 and 
21 (the break statements) we will establish termination prop- 
erties, and if we make it all the way to line 27, we will have 
established preservation, because line 27 is the same as line 5. 

If the test in line 6 is successful, we know the assertion of 
line 7: if T is anywhere in the array then it must be between 
L and U, and the success of the test means that L > U. 
Reasoning from that gives the assertion in line 8: T is no- 
where in the array. Thus we correctly terminate the loop in 
line 9 after setting P to zero. 

On the other hand, if the test in line 6 is unsuccessful, we 
come to line 10. The invariant still holds (we've done nothing 
to change it), and because the test failed we also know that 
L _< U. Line 11 sets M to the average of L and U, truncated 
down to the nearest integer. Because the average is always 
between the two values, we have the assertion of line 12. 

This brings us to the case statement in lines 12 through 27; 
the analysis of the statement will involve considering each of 
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6 
7 
8 
9 

10 
11 
12 
13 
lq  
15 
16 
17 
18 
19 
20 
21 
22 
23 
2q 
25 
26 
27 
28 

{ MustBe(1,N) } 
L:=I;U:=N 
{ H.stSe(L,U) } 
loop 

{ MustBe(L,U) } 
if L>U then 

{ L>U and MustBe(L,U) } 
{ T is nowhere in the array } 
P := 0; break 

{ MustBe(L,U) and L<=U } 
M := (L+U) div 2 
{ MustBe(L,U) and L<=M<=U 1 
case 

X[H] < T: 
{ MustBe(L,U) and CantBe(1,M) 
{ MustBe(M+1,U) } 
L := M+I 
{ MustBe(L,U) } 

X[M] = T: 
{ X[M] = T } 
P := M; break 

X[H] > T: 
{ MustBe(L,U) and CantBe(M,N) 
{ MustBe(L,M-1) } 
U:=M-I 
{ MustBe(L, U)} 

{ MustBe(L,U) } 
endloop 

FIGURE1. A~archprogmmanno~tedwithasser l i~s .  

its three possible choices. The easiest choice to analyze is the 
second alternative, in line 19. In that case we know the 
assertion in line 20, so we are correct in setting P to M and 
terminating the loop. This is the second of two places where 
the loop is terminated, and both end it correctly, so we have 
established the termination correctness of the loop. 

We come now to the two symmetric branches of the case 
statement; because we concentrated on the first branch as we 
developed the code, we'll turn our attention now to lines 22 
through 26. Consider the assertion in line 23; the first clause 
is the invariant, which the program has not altered. The 
second clause is true because T < X[M] _< X[M + 1] < . . .  _< 
X[N], so we know that T can't be anywhere in the array 
above position M - 1; this is expressed in the assertion with 
the shorthand CantBe(M, N). But logic tells us that if T must 

be between L and U and can't be at or above M, then it must 
be between L and M - 1 (if it is anywhere in X); hence line 
24. Execution of line 25 with line 24 true leaves line 26 
t rue-- that  is the definition of assignment. Thus this choice of 
the case statement re-establishes the invariant in line 27. 

The argument for lines 14 through 18 has exactly the same 
form. Line 15 follows from line 14 and the sortedness of the 
array; it in turn implies line 16. The assignment in line 17 re- 
establishes the invariant in line 18. We've thus analyzed all 
three choices of the case statement. One correctly terminates 
the loop, and the other two maintain the invariant. 

This completes one part of the analysis of the code: we've 
shown that if the loop terminates, then it does so with the 
correct value in P. It may still, however, have a bug: it might 
never halt. Indeed, this was the most common error in the 
programs written by the professional programmers. 

Our halting proof will use a different aspect of the range 
L . .  U. That range is initially a certain finite size (N), and lines 
6 through 9 ensure that the loop terminates when the range 
contains less than one element. Thus to prove termination we 
show that the range shrinks during each iteration of the loop. 
But that is easy by combining lines 12, 17 and 25. Line 12 tells 
us that M is indeed within the current range. If lines 14 
through 18 are executed, then line 17 ensures that the bottom 
of the range will be increased by at least one. Likewise, if 
lines 22 through 26 are executed, then line 25 will decrease 
the top of the range by at least one. In both cases in which 
the loop continues, the range is decreased by at least one; the 
program must therefore halt. 

Implementing the Program 
So far we've worked with the program in a high-level pseudo- 
language; our willingness to invent a new control structure 
allowed us to ignore the details of any particular implementa- 
tion language and to focus on the heart of the problem. Even- 
tually, however, we have to write the program in a real 
language. Just so you don't think that I chose the language to 
make the task easy, I implemented binary search in BASIC. 
Although that language is fine for some tasks, its paucity of 
control structures and its global (and typically short) variable 
names are substantial barriers to building real programs. 

Even with theseproblems, it was easy to translate the 
above pseudocode into the subroutine in a BASIC dialect 
shown in Figure 2. Because I translated this program from the 
carefully verified pseudocode, I had good reason to believe 
that it is correct. Before I would use it in an application, 

1000 
1010 
lO20 
1030 
lOqO 
10q5 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
11q0 
1150 

BINARY SEARCH FOR T IN X(I..N) 
PRE: X(I..N) IS SORTED IN NONDECREASING ORDER 

POST: P=0 => T IS NOT IN X(1..N) 

P>0 => P<N+I AND X(P)=T 

SIDE EFFECTS: L, U AND M ARE ALTERED 

L=I: U=N 

' MAIN LOOP 
' INVARIANT: IF T IS ANYWHERE IN THE ARRAY, 

' THEN IT MUST BE BETWEEN L AND U 

IF L>U THEN P=0: RETURN 
M=CINT((L+U)/2) 
IF X(M)<T THEN L=M+I: GOTO 1070 
IF X(M)>T THEN U=M-I: GOTO 1070 

' X(M)=T 

P=M: RETURN 

FIGURE 2. Bina~ ~amh in a BASIC dialect. 
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however, I would test it on sample data. I therefore wrote a 
test program in about 25 lines of BASIC. After declaring 
an (N + 2)-element array (indexed from 0 to N + 1), the 
program initialized X[/] to I. It then performed N searches for 
the elements I through N and checked that each returned 
P = I. After that, it performed N + 1 unsuccessful searches 
for 0.5, 1.5 . . . . .  N + 0.5 and checked that each returned 
P = 0. Finally, it searched for 0 and N + 1 and checked that 
they returned P -- 0. When I ran these tests for values of 
N from 0 to 10 (inclusive), the first version of the program 
passed them all. 

These tests poke around most of the program. They test 
every possible position for successful and unsuccessful 
searches, and the case that an element is in the array but 
outside the search bounds. Testing N from 0 to 10 covers the 
empty array, common sizes for bugs (one, two and three), 
several powers of two, and many numbers one away from a 
power of two. That testing would have been dreadfully boring 
(and therefore probably erroneous) by hand, but it used an 
insignificant amount of computer time. 

Many factors contribute to my opinion that the BASIC pro- 
gram is correct: I used sound principles to derive the pseudo- 
code; I used analytic techniques to "verify" its correctness; 
and then I let a computer do what it's good at and bombard 
the program with test cases. 

Principles of Program Verification 
This exercise displays many strengths of program verification: 
the problem is important and requires careful code, the devel- 
opment of the program is guided by verification ideas, and the 
analysis of correctness employs general tools. The primary 
weakness of this exercise is its level of detail; in practice we 
could argue at a more informal level. Fortunately, the details 
illustrate a number of general principles, including the follow- 
ing 

Assertions. The relations among input, program variables, 
and output describe the "size" of a program; assertions allow a 
programmer to enunciate those relations precisely. Their inte- 
gral role throughout a program's life is discussed in the next 
section. 

Sequential Control Structures. The simplest structure to 
control a program is of the form "do this statement then that 
statement." We understand such structures by placing asser- 
tions between them and analyzing each step of the program's 
progress individually. 

Selection Control Structures. These structures include i f  
and c a s e  statements of various forms; during execution, one 
of many choices is selected. We show the correctness of such 
a structure by considering each of the several choices individ- 
ually. The fact that a certain choice is selected allows us to 
make an assertion in the proof; if we execute the statement 
following i f z > J, for instance, then we can use the fact that 
I > J to derive the next relevant assertion. 

Iteration Control Structures. Arguing the correctness of 
loops has three phases: initialization, preservation, and termi- 
nation. We first argue that the loop invariant is established by 
initialization, and then show that each iteration maintains its 
truth. These two steps show by mathematical induction that 
the invariant is true before and after each iteration of the 
loop. The third step is to argue that whenever execution of 
the loop terminates, the desired result is true. These together 
establish that if the loop ever halts, then it does so correctly; 
we must prove termination by other means (the halting proof 
of binary search used a typical argument). 

Subroutines. To verify a subroutine, we first state its pur- 
pose by two assertions. Its precondition is the state that must 
be true before it is called, and its postcondition is what the 
routine will guarantee on termination (see the BASIC binary 
search for examples). These conditions are more a contract 
than a statement of fact: they say that if the routine is called 
with the preconditions satisfied, then the routine will assume 
the burden of establishing the postcondition. After I prove 
once that the body of the routine satisfies the conditions, I can 
use the stated relations between the pre- and post-conditions 
without ever again considering its implementation. 

The Role of Program Verification 
In teaching verification techniques to professionals, I've ob- 
served that when one programmer tries to convince another 
that a piece of code is correct, the primary tool is the test case: 
execute the program by hand on a certain input. That's a 
powerful tool: it's good for detecting bugs, easy to use, and 
well understood. It is clear, however, that programmers have 
a deeper understanding of programs--if  they didn't, they 
could never write them in the first place. One of the major 
benefits of program verification is that it gives programmers a 
language in which they can express that understanding 

The language is first used as code is developed. The pro- 
grammer should be able to explain every line of code as it is 
written. The important explanations end up in the program 
text as assertions; deciding which assertions to include is an 
art that comes only with practice. Some languages provide an 
a s s e r t  statement that allows the programmer tO write the 
assertions as logical expressions that are tested at run time; if 
a false assertion is encountered, then it is reported and the 
run is terminated (most systems allow assertion checking to 
be turned off if it is too costly in run time). 

The language of verification is also used often after the code 
has been written. During debugging, violations of the a s s e r 1: 
statements lead us to bugs, and examining the form of a 
violation shows us how to remove the bug without introduc- 
ing another. The verification techniques formalize code walk- 
through procedures. Assertions are crucial during mainte- 
nance of a program; when you pick up code that you've 
never seen before, and no one else has looked at for years, 
assertions about the program state can give invaluable insight. 

I mentioned before that these techniques are only a small 
part of writing correct programs; keeping the code simple is 
usually the key to correctness. On the other hand, several 
professional programmers familiar with these techniques have 
related to me an experience that is too common in my own 
programming: when they construct a program, the "hard" 
parts work the first time, while the bugs are in the "easy" 
parts. When they came to a hard part, they hunkered down 
and successfully used powerful formal techniques. In the easy 
parts, though, they returned to their old ways of program- 
ming, with the old results. I wouldn't have believed this phe- 
nomenon until it happened to me; it's good motivation to use 
the techniques frequently. 

Problems 
1. As laborious as our proof of binary search was, it is still 

unfinished by some standards. How would you prove that 
the program is free of runtime errors (such as division by 
zero, word overflow, or array indices out of bounds)? If you 
have a background in discrete mathematics, can you for- 
malize the proof in a logical system? 

2. If the original binary search was too easy for you, try the 
variant that returns in P the first occurrence of T in the 

December 1983 Volume 26 Number 12 Communications of the ACM 1043 



PROGRAMMING PEARLS 

array X (if there are multiple occurrences of T, our original 
algorithm returns an arbitrary one). Your code should 
make a logarithmic number of comparisons of array ele- 
ments; it is possible to do the job in log2 N such compari- 
sons. [Hint: work from a precise invariant.] 

3. Try the verification techniques on programs of your own 
(try the most subtle code you've written recently). Specify 
the assertions precisely, and then argue the transitions 
from assertion to assertion with a colleague. 

4. David Gries calls this the "Coffee Can Problem" in his 
Science of Programming. You are initially given a large pile 
of "extra" black beans and a coffee can that contains some 
black beans and some white beans. You then repeat the 
following process until there is a single bean left in the can. 

Randomly select two beans. If they are the same color, 
throw them both out and insert an extra black bean. If 
they are different colors, return the white bean to the 
can and throw out the black. 

What can you say about the color of the final remaining 
bean as a function of the numbers of black and white 
beans originally in the can? [Hint: look for an invariant 
preserved by the process, and then relate the initial condi- 
tion of the can to its terminal condition.] 

5. A colleague faced the following problem in a program to 
draw lines on a bitmapped display. An array of N pairs of 
reals (a~, bi) defined the N lines yj = aix + bi. He knew that 
the lines were ordered in the x-range [0, 1] in the sense 
that y~ < y~÷l for all values of i between I and N - 1 and 
all values of x in [0, 1] (thus the lines could be viewed as 
crooked rungs on a ladder). Given a point (x, y), where 
0 ~ x ~ 1, he wanted to determine the two lines that 
bracket the point. How could he solve the problem 
quickly? 

6. [Practice for the next column]. We saw in September 1983 
that binary search is fundamentally faster than sequential 
search: to search an N-element table, it makes roughly 
log2 N comparisons while sequential search makes roughly 
N/2. While that difference is often enough for a particular 
program, in a few cases binary search must be made faster 
yet. Although you can't reduce the logarithmic number of 
comparisons made by the algorithm, can you rewrite bi- 
nary search to lead to faster code? For definiteness, assume 
that you want to search a sorted table of N = 1000 integers. 

Solutions to Old Problems 
1. Each entry in a tax table contains three values: the lower 

bound for this bracket, the base tax, and the rate at which 
income over the lower bound is taxed. Including a final 
"sentinel" entry in the table with an "infinite" lower bound 
will make the program easier to write. 

2. Use two arrays to represent the coefficients of the recur- 
rence and the k previous values; the program consists of a 
loop within a loop. 

3. Each line of a block letter can be represented by a se- 
quence of integers telling the number of "black" spaces and 
then the number of "white" spaces; many lines will have 
the form white-black-white, though some letters will have 
more alterations (consider "W"). It might be profitable to 
encode also the number of times a particular line is to be 
repeated. 

Only one routine need be written from scratch; the other 
two can use that as a subroutine. The routine for comput- 
ing the number of days between two pairs of dates com- 

4. 

putes the number of each day in its respective year, sub- 
tracts the earlier from the later (perhaps borrowing from 
the year), and then adds 365 times the difference in years 
plus one for each leap year. The routine to compute the 
day of the week for a given day computes the number of 
days between the given day and a known Sunday, and 
then uses modular arithmetic to convert that to a day of 
the week. To prepare a calendar for a month in a given 
year we need to know how many days there are in the 
month and the day of the week on which the 1 ~ falls. 

5. Because the comparisons take place from the right to the 
left of the word, it will probably pay to store the words in 
reverse (right-to-left) order. Possible representations of a 
sequence of suffixes include a two-dimensional array of 
characters (which is usually wasteful), a single array of 
characters with the suffixes separated by a break charac- 
ter, and such a character array augmented with an array of 
pointers, one to each word. 

Industrial-Strength Program Verification 
The verification techniques in this column can have an im- 
mediate impact on any programmer: carefully specify the in- 
put and output conditions of every module you write, and 
then use the informal tools to develop the code and "verify" 
its correctness. Remember that verification is only one of 
many activities to ensure that you deliver correct, robust 
code. If you read a book like the one described in the section 
on further reading, it's bound to increase the quality of the 
code you write. 

Harlan Mills describes the impact that verification method- 
ologies have had on the Federal Systems Division of IBM in a 
special issue of the IBM Systems Journa/devoted to software 
development (Volume 19, Number 4, 1980). Verification is a 
substantial part of a course required of all programmers in the 
division; the course is based on the book Structured Program- 
ming by Linger, Mills and Witt (published in 1979 by Addi- 
son-Wesley). In his article, Mills describes how methodologies 
based on verification have played an important role in the 
division's timely delivery of quality software. The projects are 
substantial: one project he describes delivered three million 
words of code and data (developed with 200 staff-years) on 
time and under budget. For more details on this effort and 
others within IBM, see that issue of the Systems Journa/. 

Although they are not yet ready to be used in a production 
environment, I believe that program verification systems may 
soon assist the development of certain kinds of software. Ex- 
cellent research in this area is under way at a number of 
research centers, including Cornell University, the University 
of Southern California's Information Sciences Institute, Stan- 
ford University, and the University of Texas at Austin. The 
Gypsy system developed at Austin by a team led by Don 
Good is typical of this research. 

Gypsy is a methodology for specifying, implementing, and 
proving the correctness of programs. At its heart is the Gypsy 
Verification Environment, which provides a set of tools for 
applying the methodology to the construction of programs. 
The programmer writes the specifications and the code itself; 
the system keeps track of the various aspects of the software 
(specifications, code and proof) and helps out in proving most 
theorems. Gypsy has been used to develop two substantial 
programs: a "message flow modulator" that filters out illegal 
messages in the flow from one machine to another (556 exe- 
cutable lines of code) and an interface to a computer network 
(4211 lines of code that are executed in parallel on two com- 
puters). Both programs have been extensively tested, and the 
process found no bugs. 
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Those facts must be understood in context. First, only the 
smaller program was proved "totally correct"; the verification 
of the larger showed only that it had certain properties (such 
as never passing along an inappropriate message). That pro- 
gram might still fail in some other way, but the proof shows 
that certain mistakes won't be made. The second piece of bad 
news is the cost: the productivity was only a few lines of code 
per programmer per day (two on the small program, four on 
the large program). Further research should increase the pro- 
ductivity, but even this high a cost may be acceptable in 
high-security and life-critical applications. I'm optimistic about 
the promise of program verification for such applications; to 
decide for yourself, try the paper "The Proof of a Distributed 
System in Gypsy" by Don Good (Institute for Computer Sci- 
ence Technical Report 30, University of Texas at Austin, Sep- 

tember 1982). It is among the best that verification currently 
has to offer, and it's an excellent piece of engineering. 

Further Reading 
The notion of developing a program hand-in-hand with its 
proof of correctness was championed by E. W. Dijkstra in 
the early 1970s, David Gries's Science of Programming 
(Springer-Verlag, 1981) is an excellent introduction to the 
field. It starts with a tutorial on logic, goes on to a formal 
view of program verification and development, and finally 
discusses programming in common languages. In this col- 
umn I've tried to sketch the potential benefits of verifica- 
tion; the only way that most programmers will be able to 
use verification effectively is to study a book like this. 

Which Typewriter Do You Choose? 

(The following essay is reprinted from pp. 170-171 of Gries's Science of Programming 
with the kind permission of Springer-Verlag~) 

Back in 1867, the typewriter was introduced into the United 
States. By 1873, the current arrangement of the keys on the 
typewriter, called the QWERTY keyboard (after the first six 
letters of the upper key row), was implemented, never to be 
changed again. At that time typing speed was not important-- 
most people used two fingers anyway, Moreover, the typewrit- 
ers often jammed, and the most-used letters were arbitrarily 
distributed in order to reduce speed so jamming wouldn't oc- 
cur so easily. 

Today, millions of excellent, speedy touch-typists use the 
inefficient QWERTY keyboard, because that is the only one 
made. Every so often, a new arrangement is designed and 
tested. The tests show that a good typist can learn the new 
arrangement in a month or so, and thereafter will type much 
faster with much less energy and strain. Yet the new keyboard 
never catches on. Why? Too much is invested in hardware and 
training. Because of the high cost of changeover, because of 
inertia, QWERTY remains supreme. 

Let's face it: the average programmer is a QWERTY pro- 
grammer. He is stuck with old notations, like FORTRAN and 
COBOL. More importantly he has been thinking with two fin- 

gers, using the same mental tools that were used at the begin- 
nings of computer science, in the 1940s and 1950s. True, 
"structured programming" has helped, but even that, by itself, 
is not enough. To put it simply, the mental tools available to 
programmers have been inadequate. 

The work on developing proof and program hand-in-hand is 
beginning to show fruit, and it may lead to a more efficient 
arrangement of the programmer's keyboard. Luckily, the hard- 
ware need not change. Mental tools and attitudes are far more 
important in programming than the notation in which the final 
program is expressed. For example, one can use the principles 
and strategies espoused in this book even if the final program 
has to be in FORTRAN: one programs into a language, not in 
it. To be sure, considerably more than one month of education 
and training will be necessary to wean yourself away from 
QWERTY programming, for old habits are changed very 
slowly. Nevertheless, I think it is worthwhile. 

Let us now turn to the elucidation of principles and strate- 
gies that may help give the QWERTY programmer a new 
keyboard. 
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